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ABSTRACT

This document presents the mathematical formulation and the architectural summary of a Temporal Convolutional Network (TCN)
trained for multi-horizon binary classification on ETHUSDT data. The model predicts the probability that the close price exceeds a
strike (defined as the hourly open) across multiple horizons: 5, 10, 20, 30 minutes, and at the hourly expiration.
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1. Introduction

Machine learning has advanced tremendously since Frank
Rosenblatt’s introduction of the first perceptron in 1957. By
2025, its impact is so pervasive that it is difficult to identify any
field left untouched. With the aim of pursuing a career in quanti-
tative finance, I focus on stochastic differential equations (SDEs)
and machine learning as foundational tools. As an exercise, I ap-
plied them to pricing options on cryptocurrencies, starting with
ETH, in order to identify potential mispricings. The inherently
high risk of such contracts is a feature I specifically targeted,
since their prices range between 0 and 1 (as will be explained
later), and at expiration the payoff collapses to one of these two
extremes.

Thus, it is likely that the price will float enough to be mis-
priced. I planned to have a signal that could guide me to build
a trading logic entirely based on ML. In the next section, I de-
scribe the one-hour binary option market that serves as bench-
mark; Section 3 introduces the model; Section 4 presents the re-
sults; and the Appendix provides further details on the model,
the outcomes, and the project structure.

2. Market Benchmark: One-Hour Cash-or-Nothing
Binary

I became interested in cryptocurrencies due to the abundance
of readily available data, which is crucial for training machine
learning models. With increasing attention on these markets,
a segment has emerged that revolves around contracts allow-
ing participants to bet on whether the price will be higher or
lower than its opening level one hour earlier. Such contracts can
be viewed as cash-or-nothing binary call options with maturity
T = 1 hour and strike K, whose payoff is Q1;s,~x}, where Q > 0
is the fixed cash amount paid if the event {S7 > K} occurs.

Under the Black—Scholes model and the risk-neutral measure
Q, the time-0 value is

12
0 Dy, i, = In(So/K)+(r—q- 50 )T,
T

BS _
Voo =

where S is the spot price, r is the risk-free rate, ¢ is the contin-
uous dividend (or convenience yield) rate, o is the volatility, T
is the time to maturity, and ® denotes the standard normal CDF.

In our setting the market behaves as a binary whose resolu-
tion horizon is exactly one hour; we therefore take » = 0 and
g = 0, and set the final prize to Q = 1. With these conventions
the price simplifies to the risk-neutral probability that the event
occurs:

In(So/K) - 30T
oNT '

Thus, the market quote coincides with Q(S 7 > K). Throughout
we work in native (one-hour) units: 7 is one hour and o is the
corresponding one-hour volatility (not annualized), so that the
product o VT is dimensionally consistent.

VBS = Qd(dy) = D(dy),  dy =

Option prices in this market lie within the interval [0, 1],
directly reflecting the probabilities of the underlying finishing
above or below the strike. To evaluate trading outcomes, I report
profits and losses as raw deltas, since both a trader and a gambler
would prefer thinking in terms of changes to their bankrolls. This
representation makes the implications more transparent. For ex-
ample, buying 10 shares at a price of 0.5 requires a capital outlay
of 5; selling them later at 0.6 returns 6, for a net profit of 1, i.e.,
20%. By contrast, purchasing 10 contracts at 0.05 and selling at
0.06 also corresponds to a 20% relative gain, but the actual profit
is only 0.1 on a bankroll of 10, that is, 1%. In other words, iden-
tical percentage returns can correspond to very different impacts
on capital, which is why raw deltas provide a clearer picture.
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Table 1: Performance metrics across NN prediction horizons, rounded to 3 decimals.

Horizon Total return Sharpe Winrate Max drawdown Avgwin Avgloss Win/loss ratio Expectancy/trade
t+5 2.504 0.302 0.409 -0.640 0.484 0.185 2.612 0.089
t+10 3.166 0.400 0.455 -0.246 0.486 0.141 3.445 0.144
t+20 1.426 0.166 0.455 -0.615 0.443 0.250 1.770 0.065
t+30 1.506 0.177 0.455 -0.755 0.455 0.254 1.794 0.068
T 1.626 0.192 0.455 -0.686 0.458 0.246 1.861 0.074
3. Model data the model shows an edge, but proper evaluation requires

The model is a temporal convolutional network (TCN) that maps
the past 60 minutes of normalized features {x;_so,...,x;} into
multi-horizon probabilities. A stack of dilated one-dimensional
convolutions extracts temporal dependencies, and the represen-
tation at the current time 7 is projected through a fully connected
layer. The output is a vector

P(Ar,s > 0)
P(As10 > 0)
9 = |P(Ar20 > 0)].
P(A30 > 0)
P(A;r > 0)

where A, = close,,, — strike; is the price difference between
the future close at horizon 4 minutes and the strike defined by
the hour open. Thus, each component of J; is the probability that
the price at horizon & ends above the strike.

With these probabilities we can compare the model’s fore-
cast to the market-implied price and generate trading signals by
taking long positions when the forecast crosses above and short
positions when it crosses below.

4. Results

Table 1 summarizes the trading outcomes obtained by applying
the signals across horizons. The #+10 horizon delivers the
strongest performance, with a cumulative return of 3.166,
a Sharpe ratio of 0.4, and the shallowest drawdown. Other
horizons are still profitable, but their returns are smaller and
the drawdowns more severe. The win rate hovers around 45%
for all horizons, yet profits accumulate because winning trades
are on average larger than losing trades, producing win/loss
ratios between 1.7 and 3.4. This asymmetry highlights that the
strategy succeeds not by being frequently right, but by ensuring
that gains outweigh losses when it is right.

It is important to emphasize that the reported results are ex-
pressed per USD invested, which makes them appear almost too
good to be true. Given the structure of the contract, high volatil-
ity is expected, and therefore the Sharpe ratios remain low. The
key takeaway, however, is not the absolute performance metrics
but the fact that directional accuracy can be extracted from the
signal (as detailed in Appendix B). The trading outcomes ulti-
mately depend on how effectively this signal is implemented.
For the purpose of this study, it is enough to note that the TCN
provides a signal with positive growth potential (3.5 at the best
horizon #+10, corresponding to a total return of 2.5). Results of
this magnitude are extraordinary, which makes it necessary to
turn attention to the shortcomings of the current work.

First, the analysis is based on a small sample of only 22
contracts. The encouraging part is that even on such limited
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testing on thousands of contracts. By the time this paper is
read, additional time series will already have been collected,
and scaling up the dataset is only a matter of time. Second,
on a practical level, I did not save bid quotes or the ask side
for the binary put option (the only mechanism to short in this
market), and instead computed everything on the ask price. This
is a significant limitation, as the spread in these contracts can
be wide, though the model is primarily designed to capture
directional moves for hedging rather than to scalp small price
differences. Future iterations will correct this and incorporate
both sides of the market.

The largest limitation, however, lies in risk management. The
current signal strategy has no explicit take-profit or stop-loss be-
yond reacting to whether the market price crosses the prediction
line. This means the model could enter at 0.05 and be forced
to sell at 0.02 just before expiration, or churn excessively if the
market oscillates around the signal, with spread costs eroding
returns. While the results so far are positive, they make clear
that robust risk management must be built into the trading logic
from the ground up. The machine learning signal is already suf-
ficiently dynamic to follow market movements; what remains is
to design trading rules that prevent overtrading and preserve the
edge provided by the model.

5. Conclusions

This is only one of the many models that I trained before
obtaining results. Some of them yielded useless predictions,
while for most of them I could not see how to build a consistent
trading logic around the outputs. The greatest conclusion from
this process is that machine learning by itself does not provide
a sufficient framework to generate reliable predictions, and
that a proper risk management logic must be built on top of
it, with separate directives and priorities. While live-testing
this logic as it stands, one possible improvement would be to
employ machine learning to parametrize a stochastic differential
equation (SDE) model.

The difficulty in this case lies in formulating a suitable model
in the first place; nonetheless, machine learning could play the
role of a calibration engine, estimating the drift, diffusion, and
jump components dynamically from observed data. In particu-
lar, ML can be used to learn the joint dynamics of strikes, ma-
turities, and time, while incorporating external features such as
realized volatility, order flow, or liquidity indicators. Embedding
these learned relationships into the parametrization of an SDE
would enforce structural consistency, producing predictions that
live inside a financially meaningful model rather than as isolated
numerical outputs.
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Appendix A: Temporal Convolutional Network for
Multi-Horizon Classification

The Temporal Convolutional Network (TCN) used in this work
takes as input the last L = 60 minutes of ETHUSDT market
data, where each time step is represented by d = 11 features.
The input sequence can be written as
X; € Rd.

X = {xl—L+] s Xt—L425 4+ xl},

Each convolutional layer with kernel size k = 3 and dilation
factor d; = 2! computes

k=1
0 _ (), p=1) I
hy _O(E W, .h,_j,dl+b<>),
Jj=0

where W;I) are kernel weights, b’ are biases, and o is the ReLU
activation function. Dilated convolutions expand the receptive
field exponentially, allowing the model to capture both short-
term and long-term dependencies efficiently. After the final con-
volutional layer the hidden representation h;L) € R is reduced
to a fixed-size vector z;, which is passed through a fully con-
nected layer. The network output is given by

)A)[ = U(WfCZI + be)a )A}I € (07 ])59

corresponding to the probability that the close price exceeds the
strike at horizons of 5, 10, 20, and 30 minutes, as well as at the
hourly expiration. Training is performed with the binary cross-
entropy loss

N s
1 . .
L= Y [)’ij log(¥:;) + (1 —y;;) log(1 —yij)],
]

i=1 j=
where y;; are the observed binary labels. The network is

lightweight, with a total of 5,829 trainable parameters, which
makes it suitable for real-time applications.

Layer (type) Output Shape Param #
Convl1d-1 [-1,32,62] 1,088
ReLU-2 [-1,32,62] 0
Dropout-3 [-1,32,62] 0
Convld-4 [-1,32,66] 3,104
ReLU-5 [-1,32,66] 0
Dropout-6 [-1,32,66] 0
Conv1d-7 [-1,16,74] 1,552
ReLU-8 [-1,16,74] 0
Dropout-9 [-1,16,74] 0
Linear-10 [-1,5] 85
Total 5,829

Table A.1: Layer-by-layer architecture summary of the TCN-
Multi model.

The architecture summary in Table A.1 highlights that the
network remains compact, with fewer than six thousand param-
eters in total, yet retains the ability to capture temporal depen-
dencies at multiple scales through dilated convolutions. This
lightweight design is particularly suitable for real-time trading
systems, where both inference speed and memory efficiency are
critical. Figure A.1 illustrates the overall computation graph of
the model, emphasizing the sequential convolutional blocks fol-
lowed by the fully connected output layer that jointly predicts
the multi-horizon probabilities.
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Fig. A.1: Computation graph of the TCNMulti model.

As shown in Table A.1, the overall parameter count remains
below six thousand, which makes the network highly efficient
compared to recurrent alternatives such as LSTMs or GRUs. De-
spite its compactness, the use of dilated convolutions expands
the receptive field exponentially, enabling the model to integrate
both short-term fluctuations and longer-term hourly trends. This
balance between parsimony and expressiveness is well suited
to systematic trading applications, where low latency and ro-
bustness to overfitting are essential. Figure A.1 further clarifies
the computation flow: successive convolutional blocks extract
hierarchical temporal features, which are then condensed into
a fixed-size representation for joint prediction across multiple
horizons. In this way, the architecture leverages temporal struc-
ture while keeping inference fast and interpretable.
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Appendix B: Results in more depth

Despite having trained many models with initially promising re-
sults, most failed to produce a meaningful trading signal once
tested in practice. The approach presented here, however, shows
more consistent potential. In this setup, the neural network gen-
erates predictive margins: when the market price crosses be-
low the margin it indicates a bearish movement, whereas con-
vergence of the prediction toward the market price suggests a
bullish trend. At first glance this might appear trivial, akin to
saying “when the price goes up, it goes up.” Yet this interpreta-
tion does not hold once the framework is tested across a suffi-
ciently large sample of contracts, which is the direction of my
ongoing work. Even in preliminary random selections, a consis-
tent pattern emerges, pointing to the possibility of a robust and
repeatable trading signal.

Building on this idea, I designed a signal logic that oper-
ates as follows. The signal is generated whenever the model—
predicted probability p, crosses the market ask—up a;. A long
signal is issued if

signal, = +1 when p,_; <a,.; and p, > a,,

while a short signal is issued if

signal, = -1 when p,_; > a,-; and p; <a,,
and otherwise signal, = 0. Once a position is opened at entry
price x, and closed at price x,, the realized profit and loss is

X; — X, if long,
PnLt =

X, — X;, if short.
Any position left open at the final time 7 is force—closed at xr,
and cumulative performance is computed as

CumPnL, = PnL,;.

t
i=1

Table B.1 reports the distributional properties of cumulative
PnL across horizons. With only 22 observations per horizon,
the statistics should be interpreted cautiously, yet some patterns
stand out. The mean is positive for all horizons, with the highest
values at r+10 (0.144) and r+5 (0.114). The medians, however,
are closer to zero or negative, indicating that profitability is
concentrated in a subset of trades rather than evenly distributed.
This is consistent with the relatively large standard deviations
(around 0.36-0.39) and wide ranges, with minimum losses
approaching —0.6 and maximum gains near 0.9. The upper
quartiles (Q7s) are substantially positive across horizons,
which suggests that while typical outcomes may be modest
or even negative, the right tail contains strong winners that
drive the positive means. In other words, the strategy bene-
fits from payoff asymmetry: losses are frequent but bounded,
while occasional large gains account for most of the profitability.

This pattern is acceptable as long as the model is able to pre-
dict the correct direction, since by construction the contract set-
tles to either O or 1 at maturity, allowing gains to outweigh losses.
With a larger dataset, a machine learning model could be trained
to address this issue more effectively, yet the more pressing limi-
tation lies in the absence of a proper trading logic beyond the raw
signal. The strategy could already be improved by introducing
simple constraints from the trader, such as avoiding entries after
a certain time ¢ or ignoring signals below a predefined threshold.
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Table B.1: Cumulative PnL results and summary statistics across
NN prediction horizons.

contract t+5 t+10 t+20 t+30 T

Sep 24, 3AM 0.110  -0.120  -0.190  -0.290 0.270
Sep 24, 4AM 0.810 0.720 0.710 0.670 0.670
Sep 24, 5AM 0.000 0.660 0.610 0.600 0.620
Sep 24, 6AM 0.080  -0.120  -0.250 0.330 0.330
Sep 24, 9AM 0.070  -0.090  -0.160 0.250 0.220
Sep 24, 10AM 0.340 0.340 0.310 0.280 0.290
Sep 24, 11AM 0.570  -0.080  -0.440 0.440 0.440
Sep 24, 12PM 0.390 0.390 0.390 0.390 0.390
Sep 24, IPM 0.368 0.368 0.268 0.358 0.358
Sep 24, 2PM 0.000 -0.050  -0.150 0.240 0.240
Sep 24, 3PM 0.300  -0.300  -0.300 0.300 0.300
Sep 24, 4PM 0.920 0.850 0.800 0.800 0.800
Sep 24, SPM 0.020  -0.130  -0.130 0.130 0.130
Sep 24, SPM 0.010  -0.030  -0.170 0.170 0.170
Sep 24, 9PM 0.104  -0.104  -0.154 0.154 0.154
Sep 24, 10PM 0.330 0.330 0.270 0.280 0.280
Sep 24, 11PM 0.000 -0.078  -0.168 0.208 0.168
Sep 25, 12AM 0.570  -0.570  -0.630 0.270 0.270
Sep 25, 1AM 0.450 0.450 0.360 0.540 0.540
Sep 25, 2AM 0.020  -0.020 0.260 0.260 0.260
Sep 25, 3AM 0.420 0.420 0.380 0.380 0.380
Sep 25, 4AM 0.330 0.330 0.330 0.250 0.250
Count 22 22 22 22 22

Mean 0.114 0.144 0.065 0.068 0.074
Min 0.570  -0.570 0.630 0.440 0.440
25% 0.078  -0.101 -0.185 0.258 0.255
50% 0.000 -0.025  -0.140 0.142 0.142
75% 0.361 0.385 0.353 0.375 0.375
Max 0.920 0.850 0.800 0.800 0.800
Std 0.377 0.360 0.390 0.386 0.384

Moreover, the current signal design is admittedly primitive, but

the fact that it achieves a positive and satisfactory growth rate 260

suggests that performance can only improve once more sophis-
ticated trading rules are integrated.
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Appendix C: Project Directory Structure

In this appendix, the focus is placed on the supporting infrastruc-
ture that underpins the main trading framework. The utils di-
rectory implements the essential services that enable the system
to manage internal state, coordinate asynchronous processes, and
deliver reliable inputs to the higher-level trading logic.

— data

l_ bets.csv

f“ conds_passed. txt

f“ figures

f“ ledger.csv

f“ pnl_summary.txt

— tests

main.py

models

[ bnn_1lmin.pt

[ nn_model _multi.pt
tcn_multihorizon.pt
tcn_trendrev.pt
tcn_trendrev_houropen.pt
tcn_vol_best.pt
vol_model.pth
requirements.txt
standalone

f“ __init__.py

f“ manual-trading.ipynb
f“ pnl_analysis.py

— visual.py

storage

F— ETHUSDT. txt

— train_multihorizon.py
trading

— __init__.py
__pycache__
back_tester.py
risk_manager.py
trade.py
trade_helpers.py
utils

— __init__.py
__pycache__
bet_manager.py
bot_state.py
config.py
stream_odds.py
stream_underlying.py

The file bet_manager.py is responsible for discovering and
maintaining betting opportunities. It retrieves candidate markets,
filters them by activity and expiration, and attaches the relevant
start and end times. By persisting this information in bets.csv,
and by updating auxiliary records such as conds_passed. txt
and ledger.csv, it ensures that only valid opportunities are
considered at any given time. In addition, bet_manager.py
supplements these records with corresponding reference prices,
thereby providing the baseline for subsequent decisions.

The state of the entire trading system is centralized in
the dataclass defined in bot_state.py. This structure, called

BotState, stores identifiers for current and upcoming condi-
tions, order book odds, market times, and reference price infor-
mation. It also manages asynchronous event flags, which coordi-
nate the independent streaming tasks. As such, BotState func-
tions as the shared memory of the system, ensuring consistency
across concurrent processes.

The file stream_odds.py implements the streaming inter-
face for odds data. Through continuous subscription and mon-
itoring, it reconstructs the order books of the relevant instru-
ments and extracts the best bid and ask levels. These values
are injected into the shared state in real time, allowing the trad-
ing logic to evaluate odds as they evolve. To safeguard reliabil-
ity, the streamer handles stale connections, reconnects automati-
cally, and maintains responsiveness through asynchronous event
signaling.

Finally, stream_underlying.py establishes a persistent
streaming connection to capture underlying price dynamics. It
records both candlestick data and order book depth, updating
the shared state with each new message. This integration pro-
vides the essential link between the odds data and the underlying
asset, allowing the framework to compare relative information
consistently over time.
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